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Abstract

A single reference frame is frequently employed to derive equations of motion in structural dynamic analysis. For simple

structures like a single beam and a single plate, the method of employing a single reference frame usually provides well

converged and accurate results for equilibrium and modal analyses. However, for structures having more general

configurations such as multibeam structures, use of a single reference frame often results in slow convergence and even

erroneous analysis results. In the present study, a modeling method employing multiple reference frames for dynamic

equilibrium and modal analyses of rotating structures is presented. The superiority of the proposed modeling method over

the single reference frame modeling method is verified with numerical examples.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

For the design of structures which are undergoing large overall motion during their normal operation (such
as substructures of aircraft, spacecraft and ships), accurate and reliable structural modeling methods need to
be employed. Even if such design activities can be most effectively supplemented by experiments, it is often
very difficult and expensive to realize the actual operation environment on Earth. For instance, the
gravitational field in space is much different from that on Earth. Also, fast rotational rigid-body motion, that
is one of normal operation of aircraft or spacecraft substructures, is quite difficult to realize through an
experiment. Therefore, designers naturally rely on analytical or numerical methods instead of experimental
methods. The analytical (or numerical) methods, however, should be accurate and reliable enough for the
design tasks to be accomplished with reasonable accuracy.

Several modeling methods have been developed for the dynamic analysis of structure. Classical linear
modeling has been most widely used to predict the dynamic characteristics of structure (for instance, see Refs.
[1–3]). This modeling method has several merits such as simplicity of formulation, ease of implementation in
finite element methods, and availability of coordinate reduction techniques, which is often critically important
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

Ai orientation matrix of the local reference
frame

Ai
y partial derivative of Ai with respect to yi

B velocity transformation matrix
C* damping matrix for independent coor-

dinates
Cik transformation matrix of the kth beam

element in structure i

I 3� 3 identity matrix
i structure number
j node number
K total system stiffness matrix
K* stiffness matrix for independent coordi-

nates
Ki

g geometric stiffness matrix for structure i

k element number
Lik Boolean matrix of the kth beam element

in structure i

lik the length of the kth beam element in
structure i

M total system mass matrix
M

* mass matrix for independent coordi-
nates

mij number of lumped mass of node j in
structure i

Ni reduced modal matrix
Nij submatrix of Ni related to j

nn
i number of nodes in structure i

O origin of the global reference frame
Ō

i
origin of the local reference frame

P axial force
Pik axial force acting on the beam element k

in structure i

Q total generalized force
Qg generalized force due to geometric

stiffening effect
Qi

g generalized force due to geometric
stiffening effect for structure i

Qv generalized force due to centrifugal and
Coriolis accelerations

q total system coordinates of the system
qd dependent coordinates

qi independent coordinates
qi coordinates for structure i

qf
i modal coordinates for the structure i

Ri position of the origin point of structure
i

rij position of the generic node j

Sik shape function of the beam element k in
structure i

Sik
2;x partial derivative of S2

ij with respect to x

s stretching variable
Ti kinetic energy of structure i

u2 bending displacement
u2

ik bending displacement of the beam
element k in structure i

Ui strain energy of structure i

ūij deformed position of node j in structure
i

ūi
f elastic deformation of the generic struc-

ture i

ū
ij
f elastic deformation of node j in struc-

ture i

ūij
r undeformed position of node j in

structure i

dWg
i virtual work done by the axial force to

the structure i

Wg
ik work done by the axial force Pik to the

element k in structure i

X�Y global reference frame
X̄

i
� Ȳ

i
local reference frame

x̄ik � ȳik element reference frame
aik angle between local reference frame

X̄
i
� Ȳ

i
and element reference frame

x̄ik � ȳik

b angle between two beam elements
k Lagrange multiplier
U algebraic constraint equation
Uq Jacobian matrix (partial derivative of U

with respect to q)
Uqd partial derivative of U with respect to qd

Uqi partial derivative of U with respect to qi

yi rotational coordinates for the structure
i

Os steady-state angular velocity
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for the dynamic analysis of structures. However, the classical modeling method often displays a critical flaw
when the structure undergoes a large overall motion. Consequently, several nonlinear modeling methods (for
instance, see Refs. [4,5]) were developed to resolve the problem of the classical modeling method. However,
these methods are inconvenient (so inefficient) for the modal analysis of structures undergoing overall motion.
A three-step procedure (first finding the dynamic equilibrium state, then linearizing the nonlinear equations at
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the equilibrium state, and finally performing modal analysis with the linearized equations) needs to be
employed to obtain the modal characteristics of rotating structures. More recently, to avoid the inconvenience
of the nonlinear modeling methods, special linear modeling methods employing hybrid deformation variables
(for instance, see Refs. [6–9]) were introduced. However, only simple structures (a single beam and a single
plate) were solved with the modeling methods, in which a single reference frame is employed. This method of
employing single reference frame is also applied to analyze composite structures (for instance, see Refs.
[10–13]) successfully.

For the modeling methods mentioned so far, a single reference frame (an inertial reference frame is
employed for the nonlinear modeling methods and a local reference frame is employed for the special linear
modeling methods) is employed. The method of employing a single reference frame is simple and effective to
analyze structures like a single beam and a single plate (see Refs. [4,14]). However, for structures having more
general configurations, slow convergence and even erroneous results could be often experienced with the
method. Therefore, a modeling method which can provide well converged and accurate results needs to be
developed for structures having more general and complex configurations.

In this paper, a modeling method employing multiple reference frames is proposed. Compared to the single
reference frame modeling method (implemented in most commercial codes), this method provides accurate
dynamic response and modal characteristics for structures having more general and complex configurations. If
the structure has a simple geometry like a beam or a plate, the accuracy of the proposed method is equivalent
to the method of employing single reference frame. However, if the structure has a general complex
configuration, the proposed method clearly exhibits its superiority over the single reference frame method.

The proposed modeling method employs finite element method to consider structures having more general
and complex configuration. The modeling method employs lumped mass modeling technique that simplifies
the derivation of equations of motion. The mass and the stiffness matrices can be easily obtained from any
finite element codes for static and dynamic analysis of structures. Elastic deformations are approximated with
the modal matrix, which can be obtained from the mass and the stiffness matrices by solving the eigenvalue
problem. Geometric stiffening effect that results from the centrifugal inertia force caused by large overall
rigid-body motion is considered in the modeling method. To verify the rapid convergence and the accuracy of
the proposed modeling method, some numerical examples are solved. The results obtained by the present
modeling method employing multiple reference frames are compared to those obtained by the modeling
method employing a single reference frame. The superiority of the present modeling method over the method
employing a single reference frame is verified with the numerical examples.
2. Equations of motion

2.1. Kinetic energy

Fig. 1 shows the configuration of a generic structure i undergoing rigid-body motion and elastic
deformation. The index j denotes a generic node of the generic structure. In the figure, X�Y denotes a global
reference frame, O denotes the origin of the global reference frame, X̄

i
� Ȳ

i
denotes a local reference frame,

and Ō
i
denotes the origin of the local reference frame. The column matrices Ri and r

ij, respectively, denote the
position of Ō

i
and the generic node, which are measured in the global reference frame. The column matrices

ūij
r , ū

ij
f , and ūij , respectively denote the undeformed position of node j from Ō

i
, the elastic deformation of node

j, and the deformed position of node j from Ō
i
, which are measured in the reference frame. Using the notations

introduced so far, the following relation can be obtained:

rij ¼ Ri þ Aiūij ¼ Ri þ Ai ūij
r þ ū

ij
f

� �
, (1)

where Ai is the orientation matrix of the local reference frame with respect to the global reference frame.
If ūi

f represents the elastic deformation of the generic structure i, it can be constituted by ū
ij
f , which is defined

previously. The elastic deformation ūi
f can be obtained as follows:

ūi
f ¼ Niqi

f , (2)
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Fig. 1. Configuration of a structure undergoing rigid-body motion and elastic deformation.
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where Ni denotes a reduced modal matrix, which can be obtained by solving the eigenvalue problem of the
generic structure and qf

i denotes the modal coordinate. The reduced modal matrix includes only some mode
vectors (not all mode vectors). Since ū

ij
f is a sub-matrix of ūi

f , it can be also obtained by using the modal matrix
as follows:

ū
ij
f ¼ Nijqi

f , (3)

where Nij is a sub-matrix of Ni related to node j.
Now the velocity of node j can be obtained by substituting Eq. (3) into Eq. (1) and differentiating the

resulting equation with respect to time:

_rij ¼ _R
i
þ Bij _y

i
þ AiNij _qi

f , (4)

where

Bij � Ai
yū

ij (5)

and yi consists of rotational coordinates of the local reference frame with respect to the global reference frame
and Ay

i is the partial derivative of Ai with respect to yi. Now the kinetic energy of the structure i can be
described as follows:

Ti ¼
1

2
_qiTMi _qi, (6)

where

Mi ¼

Mi
rr Mi

ry Mi
rf

ðMi
ryÞ

T Mi
yy Mi

yf

ðMi
rf Þ

T
ðMi

yf Þ
T Mi

ff

2
664

3
775; qi ¼

Ri

yi

qi
f

8>><
>>:

9>>=
>>;. (7)

The sub-matrices of Mi are given as follows:

Mi
rr ¼

Xni
n

j¼1

mijI; Mi
ry ¼

Xni
n

j¼1

mijBij ; Mi
rf ¼

Xni
n

j¼1

mijAiNij, (8)
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Mi
yy ¼

Xni
n

j¼1

mijBijTBij ; Mi
yf ¼

Xni
n

j¼1

mijBijTAiNij ; Mi
ff ¼

Xni
n

j¼1

mijNijTNij . (9)

In Eqs. (8) and (9), mij denotes the lumped mass of node j, nn
i is the number of nodes in structure i, and I

denotes 3� 3 identity matrix.

2.2. Strain energy

Since the strain energy of the structure i is only associated with elastic deformation, it can be described as
follows:

Ui ¼ 1
2
ūiT

f K̄
i
ūi

f , (10)

where K̄
i
is the global stiffness matrix of the structure. If Eq. (2) is employed, the strain energy can be rewritten

as follows:

Ui ¼ 1
2
qiTKiqi, (11)

where

Ki ¼ NiTK̄
i
Ni. (12)

The stiffness matrix expression given in Eq. (12) is different from the mass matrix expression of Eq. (7),
which is dependent on the orientation matrix. Since the strain energy has nothing to do with the rigid-body
rotation of the structure, the stiffness matrix does not depend on the orientation matrix.

In the present work, Euler–Bernoulli beam theory is employed and the corresponding strain energy
expression is employed for Eq. (11). So, the shear and the rotary inertia effects are not considered. Such effects
should be included for the analysis if the beam has relatively thick dimension. Since the major issue of the
present work does not lie on issues of elastic effects, those effects are not considered. The major contribution
of the present work lies on the issue of the accuracy enhancement due to employment of multiple reference
frames.

2.3. Generalized force due to geometric stiffening effect

To consider the geometric stiffening effect of a structure that consists of beam elements, work done by the
axial force P during the lateral deflection should be considered. The geometric stiffening effect of an
infinitesimal beam element due to lateral deflection is shown in Fig. 2. The axial length change of the
infinitesimal beam element due to lateral deflection can be obtained as follows:

dx� ds ¼ dx� ðdxÞ2 �
qu2

qx

� �2

ðdxÞ2

" #1=2
ffi

1

2

qu2

qx

� �2

dx. (13)
dx

ds  

yik

xik  

dx
∂x

∂u2

Foreshortening 
P

P

Fig. 2. Foreshortening of an infinitesimal beam element due to lateral deflection.
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Since foreshortening occurs while the axial force acts on the element, the work done by the axial force is
negative. Therefore, the work done by the axial force, which is invariant during the foreshortening, can be
obtained as follows:

W ik
g ¼ �

1

2

Z lik

0

Pik quik
2

qx

� �2

dx, (14)

where lik is the length of the kth beam element in the structure i; Pik is the axial force acting on the beam
element; u2

ik is the lateral deflection of the beam element. Therefore, the virtual work done by the axial force of
the structure i that is composed of ni

e beam elements can be described as following equation:

dW i
g ¼ �

Xni
e

k¼1

Z lik

0

Pik quik
2

qx

� �
d

quik
2

qx

� �
dx, (15)

where ni
e is the number of beam elements of the structure i.

By employing the shape function Sik of a beam element, the axial and lateral deflection of beam element can
be written as follows:

uik
1

uik
2

" #
¼ SikTikqi

f . (16)

The shape function Sik and Tik in Eq. (16) can be given as follows:

Sik ¼
Sik
1

Sik
2

" #
¼

1� x 0 0 x 0 0

0 1� 3x2 þ 2x3 lij
ðx� 2x2 þ x3Þ 0 3x2 � 2x3 lij

ðx3 � x2Þ

" #
, (17)

where

x ¼
x

lik
, (18)

Tik � CikLikNi, (19)

where

Cij
¼

cos aik sin aik 0 0 0 0

� sin aik cos aik 0 0 0 0

0 0 1 0 0 0

0 0 0 cos aik sin aik 0

0 0 0 � sin aik cos aik 0

0 0 0 0 0 1

2
666666664

3
777777775
, (20)

= (21)

In the above equations, Cik and Lik denote a transformation matrix and a Boolean matrix for beam
element assembly, respectively. The Boolean matrix is often employed for the connectivity of finite elements
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Fig. 3. Notations for kth beam element.
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(see Ref. [15]). The total size of the Boolean matrix is 6� 3ni
n. In Eq. (20), aik denotes the angle between the

structure reference frame X̄
i
� Ȳ

i
and the element reference frame x̄ik � ȳik. In Eq. (21), m and n denote the

node numbers of the kth beam element, which are shown in Fig. 3.
Substituting Eq. (16) into Eq. (15), the virtual work created by the geometric stiffening effect can be

obtained as follows:

dW i
g ¼ �q

iT

f K
iT

g dq
i
f . (22)

In the above equation, Ki
g is the geometric stiffness matrix for structure i which can be defined as

Ki
g �

Xni
e

k¼1

PikTikT

GikTik, (23)

where

Gik
�

Z lik

0

SikT
2;x S

ik
2;x dx ¼

1

lik

0 0 0 0 0 0

0
6

5

lik

10
0 �

6

5

lik

10

0
lik

10

2ðlik
Þ
2

15
0 �

lik

10
�
ðlik
Þ
2

30
0 0 0 0 0 0

0 �
6

5
�

lik

10
0

6

5
�

lik

10

0
lik

10
�
ðlik
Þ
2

30
0 �

lik

10

2ðlik
Þ
2

15

2
66666666666666664

3
77777777777777775

, (24)

where S2,x
ik is the partial derivative of S2

ik with respect to x. Using the Hooke’s law, the axial force Pik can be
obtained as follows:

Pik ¼ Eikaik quik
1

qx

� �
¼ EikaikSik

1;xq
i
f , (25)

where Eik is the Young’s modulus of the beam element k in the structure i, aik is the cross sectional area of the
element and

Sik
1;x ¼

1

lik
½ �1 0 0 1 0 0 �. (26)
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From Eq. (22), the generalized force due to geometric stiffening effect associated with qi
f can be obtained as

follows:

ðQi
gÞf ¼ �K

i
gq

i
f . (27)

Finally, the generalized force can be expressed as follows:

Qi
g ¼

0

0

0

ðQi
gÞf

8>>>><
>>>>:

9>>>>=
>>>>;
. (28)
2.4. Equations of motion

Using the kinetic energy, the strain energy, and the generalized force due to geometric stiffening
effect, the equations of motion of a structure that consists of nb substructures can be derived (see Ref. [16]) as
follows:

M€qþ KqþUT
q k ¼ Qv þQg. (29)

In the above equation, M and K are the system mass and stiffness matrices which are defined as follows:

M ¼

M1 0 0 0 0

0 M2 0 0 0

0 0 � 0 0

0 0 0 � 0

0 0 0 0 Mnb

2
6666664

3
7777775
, (30)

K ¼

K1 0 0 0 0

0 K2 0 0 0

0 0 � 0 0

0 0 0 � 0

0 0 0 0 Knb

2
6666664

3
7777775
. (31)

And q consists of total generalized coordinates of the system, Uq and k are the Jacobian matrix and the
corresponding Lagrange multiplier which result from algebraic constraint equations. The notation Qv denotes
the generalized force (due to centrifugal and Coriolis acceleration components) which is given as follows:

Qv ¼

Q1
v

�

�

�

Qnb
v

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, (32)

where

Qi
v ¼ �

_M
i
_qi þ

1

2

q
qqi

_qiTMi _qi
� �� �T

. (33)
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And the generalized force of the system due to the geometric stiffening effect is given as follows:

Qg ¼

Q1
g

�

�

�

Qnb
g

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
. (34)

2.5. Equations for modal analysis

To perform modal analysis of rotating structures, the dynamic equilibrium position and the linearized
equations of motion at the equilibrium position need to be derived (to obtain the mass and the
stiffness matrices). Due to the algebraic constraint equations U the system coordinates q are not indepen-
dent. To obtain the dynamic equilibrium position effectively, the equations of motion, Eq. (29), need to be
expressed with independent coordinates only. For the purpose, the system coordinates of q are partitioned as
follows:

q ¼
qd

qi

( )
, (35)

where qd and qi represent the dependent and the independent coordinates, respectively. To describe the
configuration of a multibody system, 6 Cartesian coordinates (3 for position and 3 for orientation) are
often employed for the general formulation of multibody dynamics. Since the number of degrees of freedom
is far less than the number of Cartesian coordinates, one may choose only some coordinates as the
independent coordinates. The method of choosing independent coordinates can be found in previous literature
(see Ref. [16]).

To find the velocity transformation relation between system coordinates and the independent coordinates,
the algebraic constraint equations U are differentiated with respect to time:

Uqd
_qd þUqi

_qi þUt ¼ 0. (36)

In this study, it is assumed that the algebraic constraint equations are not explicit functions of time. So,

_qd ¼ �U�1qd
Uqi

_qi, (37)

Thus, the system coordinates can be expressed as follows:

_q ¼ B_qi, (38)

where

B ¼
�U�1qd

Uqi

I

" #
. (39)

The matrix B is often called the velocity transformation matrix. Differentiating Eq. (38) with respect to
time,

€q ¼ B€qi þ c, (40)

where

c ¼ _B_qi. (41)

Now substituting Eq. (40) into Eq. (29) and pre-multiplying the resulting equation by BT, one can obtain the
following equation (since B is the null space of Uq):

BTMB€qi þ BTðMc�QÞ ¼ 0, (42)
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where

Q ¼ �KqþQv þQg. (43)

From Eq. (42), one can obtain the dynamic equilibrium position by letting _qi ¼ €qi ¼ 0. Thus,

BTQ ¼ 0. (44)

Since the above equation is generally nonlinear in terms of the independent coordinates, the dynamic
equilibrium position can be obtained by using Newton–Raphson algorithm. Finally, the modal equations can
be obtained by linearizing equation (42) at the dynamic equilibrium position. Thus, the mass, the damping,
and the stiffness matrices for the modal analysis are obtained as follows:

M� ¼ BTMB
��
qi¼q

�
i

, (45)

C� ¼
q
q_qi

BTMB€qi þ BTðMc�QÞ
	 
� �

qi¼q
�
i

, (46)

K� ¼
q
qqi

BTMB€qi þ BTðMc�QÞ
	 
� �

qi¼q
�
i

, (47)

where qi
* is the independent coordinates at the dynamic equilibrium position. To obtain the damping and

stiffness matrices, the finite difference method is employed in the present study. Obtaining the damping and
the stiffness matrices in an analytical way is too complicated and time consuming. Furthermore, the finite
difference method could provide good accuracy as well as efficiency in the calculation of the matrices. Finally,
the equation for the modal analysis can be obtained as follows:

M�d€qi þ C�d_qi þ K�dqi ¼ 0. (48)

3. Numerical results and discussion

Fig. 4 shows a planar beam structure (that consists of two beams) that rotates with constant angular speed
Os. In the figure, X̄

i
� Ȳ

i
denotes the ith local reference frame and b denotes the angle between the two beams.

The geometric and the material properties of the beams are shown in Table 1. Symmetric beam cross-sections
with no eccentricity are employed to avoid coupling between bending and torsional motions. Beam structures
consisting of such a long slender dimension may often be found in a space robot structure which has several
slender arms. Four local reference frames are employed for the proposed modeling method, which is explained
in the previous section. Total 32 beam elements having equal length are employed for the finite element
procedure. As the angular speed Os varies (when the angle b is 901), the dynamic equilibrium position of the
free end point P is obtained by employing three methods: single reference frame method, multiple reference
frame method, and a fully nonlinear finite element method (see Ref. [17]). The results obtained with the fully
nonlinear finite element method are employed for the verification purpose. The horizontal and the vertical
Ωs

Y1

X2
Y2

X3

Y3

Y4

X4

P

l2X1

l1

�

Fig. 4. Configuration of a rotating 2-beam structure.
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Table 1

Properties of the 2-beam structure

Notation Description Numerical data

E Young’s modulus 7� 1010N/m2

r Mass per unit length 1.2� kg/m

I Area moment of inertia 2� 10�7m4

A Cross-section area 4� 10�4m2

l1 Length of beam 1 5m

l2 Length of beam 2 5m
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Fig. 5. Elastic deformation transverse to 2nd beam at the free end with the two methods (b ¼ 901).
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Fig. 6. Elastic deformation parallel to 2nd beam at the free end with the two methods (b ¼ 901).

H.H. Yoo et al. / Journal of Sound and Vibration 302 (2007) 789–805 799
elastic deformations, which are measured with respect to the first local reference frame X̄
1
� Ȳ

1
, are shown in

Figs. 5 and 6, respectively. These figures indicate that the results obtained by employing multiple reference
frames are in good agreement with those of the fully nonlinear finite element method. However, the accuracy
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of the results obtained by employing a single reference frame deteriorates as the angular speed increases. The
accuracy of the modal analysis depends on that of the dynamic equilibrium analysis since the equations for the
modal analysis are obtained by linearizing the equations of motion at the dynamic equilibrium position.
Therefore, it can be concluded from the above results that the accuracy of the modal analysis obtained with a
single reference frame deteriorates as the angular speed of the structure increases.

Figs. 7–9 show the variations of the lowest three natural frequencies of the 2-beam structure versus the
angular speed when b is 01, 451, and 901, respectively. The two methods are employed to obtain the results: the
single reference frame method and the multiple reference frame method. As shown in Fig. 7, the two results are
in reasonable agreement when the angle b is 01. The natural frequencies increase as angular speed increases.
This phenomenon is well known as the stiffening effect of the rotating structure. However, as the angle b
increases (as shown in Figs. 8 and 9), the disagreement between the two results increases. Especially, the
disagreement becomes more significant with the second and the third natural frequencies. Since the natural
frequency results of the single reference frame method are obtained by employing inaccurate dynamic
equilibrium position, the accuracy of the modal analysis results deteriorates as the angle b and the angular
speed increase.
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Fig. 7. The lowest three natural frequency variations versus angular speed obtained with the two methods (b ¼ 01).

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

110

ω3

ω2

ω1

N
a
tu

ra
l 
fr

e
q
u
e
n
c
ie

s
 (

ra
d
/s

)

Single-RF

Multi-RF

Angular speed Ωs (rad/s)

Fig. 8. The lowest three natural frequency variations versus angular speed obtained with the two methods (b ¼ 451).
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Fig. 9. The lowest three natural frequency variations versus angular speed obtained with the two methods (b ¼ 901).
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Fig. 10. Comparison of mode shapes obtained by single and multiple reference frame methods (Os ¼ 0 rad/s, b ¼ 901).
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Fig. 11. Comparison of mode shapes obtained by single and multiple reference frame methods (Os ¼ 5 rad/s, b ¼ 901).

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

ω3

ω2

N
a

tu
ra

l 
fr

e
q

u
e

n
c
ie

s
 (

ra
d

/s
)

ω1

without the geometric stiffening term (8 - RF)

with the geometric stiffening term (8-RF)

without the geometric stiffening term (16 - RF)

Angular speed Ωs (rad/s)

Fig. 12. The effect of the geometric stiffening term and multiple reference frames on the natural frequencies.

H.H. Yoo et al. / Journal of Sound and Vibration 302 (2007) 789–805802



ARTICLE IN PRESS

Table 2

Convergence of natural frequencies versus number of reference frames when the geometric stiffening term is absent or present

RF Geometric stiffening term absent Geometric stiffening term present

o1 o2 o3 o1 o2 o3

2 Fail to obtain 6.40 34.61 63.77

4 6.97 41.85 87.41

6 7.11 46.46 96.21

8 3.05 45.27 75.75 7.19 48.07 103.21

12 6.08 48.19 100.23 7.27 49.13 106.72

16 6.72 49.00 104.12 7.33 49.51 107.89

Os ¼ 20 rad/s and b ¼ 901. Units: rad/s.

l
l

l

l

l

Ωs

45°

Fig. 13. Configuration of a rotating 5-beam structure.
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Fig. 10 shows the first and the second mode shapes of the 2-beam structure when Os ¼ 0 rad/s and b is 901.
The equilibrium positions are also given in the figure. The results obtained by the single reference frame
method and the multiple reference frame method are relatively in good agreement. However, as shown in
Fig. 11, the discrepancy between the two results obtained by the two methods increases as the angular speed
increases. Fig. 11 also shows that the foreshortening effect cannot be considered with the single reference
frame method while it can be well considered with the multiple reference frame method.

Fig. 12 shows the variations of the lowest three natural frequencies of the 2-beam structure (versus the
angular speed) when b is 901. Eight reference frames are employed to obtain the solid line results. The
dotted line and the broken solid line results are obtained without the geometric stiffening term shown in
Eq. (27). As shown in the figure, even if the geometric stiffening term is not included, converged solutions
can be obtained with enough number of reference frames. However, if the geometric stiffening term is
considered, faster convergence can be achieved with less number of reference frames. In general, including
the geometric stiffening term is more efficient than increasing the number of reference frames to save
computing time.
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Fig. 14. The lowest three natural frequencies of 5 beam structure versus angular speed obtained with the multiple reference frame method

and the single reference frame method.
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To investigate the effect of the geometric stiffening on the convergence trend of the multireference frame
method, the lowest three natural frequencies (versus the number of reference frames) are tabulated in Table 2.
The 2-beam structure (b ¼ 901) is employed and 48-beam elements are used to obtain the natural frequencies.
As shown in the table, if the geometric stiffening term is absent, it is difficult to obtain accurate natural
frequencies. The only way to achieve reasonable accuracy (when the geometric stiffening term is absent) is to
increase the number of reference frames sufficiently. But that will cost much computing time.

As the last numerical example, a multibeam structure that consists of five beams is shown in Fig. 13. The
geometric and the material properties of the five beams are same as those given in Table 1 except the length.
Here, the length of a beam is 2m. Total 15 reference frames and 60 beam elements are employed for the
analysis in which the geometric stiffening term is considered. The results (the lowest three natural frequencies
versus angular speed) obtained by employing the multiple reference frame method and the single reference
frame method are compared in Fig. 14. As shown in the figure, the discrepancy between the two results is more
significant in higher natural frequencies.
4. Conclusion

In this study, a modeling method employing multiple reference frames is proposed to find the modal
characteristics of rotating structures that consist of multibeams. In the modeling method, a geometric
stiffening term is included to accelerate the convergence of solutions. If the geometric stiffening term is not
included, one should employ more reference frames to achieve the corresponding convergence. It is shown that
the results obtained by employing the multiple reference frame method are more accurate than those obtained
by employing the single reference frame method. This study shows that one should be very careful to employ a
finite element code to perform modal analysis of rotating structures. Especially, when the angles among the
beams of the multibeam structure increases, a finite element code employing a single reference frame could
provide inaccurate results. Lastly, the formulation suggested in the present work can be applied to any three
dimensional structures even if only planar motion examples are solved in the present study. Also, even if only
beam element is employed in the present study, more general structural elements (like plates and shells) can be
also incorporated into the formulation.
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